Free Novel Read

Fiasco Page 23


  Individual people—on the microscopic scale—always made inventions and discoveries, whether singly or in groups, but these creators could be factored out of the equation, because it was inventions that gave rise to inventions, and discoveries that led to discoveries. This acceleration described a parabola that seemed to soar to infinity. A saturation bend in the curve was not caused by other individuals who sought to protect the environment; the curve would bend only where a failure to bend would destroy the biosphere. Invariably it would bend at the critical point, for if technologies for saving or replacing the biosphere did not come to the rescue of the technologies of expansion, the given civilization would enter a crisis to end all crises, i.e., extinction. With no air to breathe, there could be no one to make further discoveries and receive Nobel prizes.

  According to the data of cosmology and astrophysics, the main road of Ortega-Nilssen thus reflected only the limiting capacity of the given biosphere (also termed its maximum technological load). But that capacity did not depend on anatomy or on the organizational forms of collective life; it depended on the physical-chemical features of the planet, its ecospheric position, and other cosmic factors, including stellar and galactic influences, etc. Wherever the biosphere's load limit was reached, the main road broke off, which meant only that the civilizations in question were obliged to come to some global decisions about their future. When they were unwilling or unable to do this, they perished.

  The breaking off of the main road coincided with the so-called upper frame of the window of contact. That frame or boundary—also called the "growth barrier"—accounted for the subsequent branchings from the monolithic trunk that was the main road, because different civilizations continued their existence in different ways. Though as yet no information had been exchanged with any psychozoic, it was known from calculation that there was not one and only one optimal decision, no best way out of the trap created by the technosphere's damage to the biosphere. Even a united civilization did not have before it a single path that would lead it safely through the multiplying dilemmas and perils.

  As for the current situation, it was the result of inappropriate actions that came of departing from the expedition's original program. In DEUS's opinion, the series of wrong steps ensued because they did not appear wrong at the time that they were made; their wrongness revealed itself only in retrospect. More precisely, the Hermes had been drawn into Arrow's paradox: the decider attempts to accomplish two things that are each of value but that cannot both be accomplished. In the range between maximum risk and maximum caution ran a resultant from which it would be difficult to extricate themselves. DEUS did not think that the captain was to blame for the present impasse, because the captain had sought to strike a compromise between risk and caution. After capturing the Quintan orbiters behind Juno and discovering their "viroids," he had deviated from the program toward excessive caution, camouflaging the ship and not sending signals to Quinta announcing visitors from outer space. The price of that caution was evident now.

  The second error lay in giving the Gabriel too much autonomy, too much inventiveness. Paradoxically, this also came from excessive caution—and from the mistaken assumption that the Gabriel, superior in speed to the orbiters or rockets of Quinta, could land without letting itself be intercepted. In order for it to possess such speed, it was given a teratron drive. And in order for it to respond suitably to the unforeseen behavior of the host upon landing, it was given a too-intelligent computer. The SETI program called for sending, first, smaller probes; but this was rejected when the diplomatic exertions of the Ambassador all came to nothing. No one dreamed that the Gabriel would transform its drive unit into an implosive sidereal gun. Thus, because of the ingenuity of the Gabriel's computer, they found themselves in a predicament. It was now impossible to send other probes as if nothing had happened. A new situation called for new tactics. DEUS needed twenty hours to think. That was where the matter stood.

  After his evening watch, the pilot could not sleep. He kept thinking about the council; it had resulted in nothing for him but an increased dislike for DEUS. That mighty electronic mind might be brilliant at logic, but the effect it produced was strikingly pharisaical. Mistakes had been made, they had all departed from the program, yet the captain was not held accountable, nor did DEUS itself bear the least responsibility for this, as it proved with great precision. Arrow's paradox; the camouflage fraught with evil consequences; the excessive suspicion regarding the Quintans, kindled by the sabotage hypothesis to explain the origin of the viroids, as DEUS now so clearly defined the problem—and who had served, all this time, as adviser to the captain?

  Buckled to the bed because he was weightless, he finally grew so angry that sleep was out of the question. So he turned on the point-light over his head, pulled a book out from under the bunk, The Hermes Program, and started to read.

  First he leafed through the general assumptions about Quinta. This was a computer printout made just before takeoff from the Eurydice, based upon the collected and interpreted astrophysical observations. The Quintans had at their disposal energy on the order of 1030 ergs. Their civilization was thus on the pre-sidereal level. The major sources of energy were undoubtedly thermonuclear reactions of the stellar type, but power stations had not been launched into space. Most likely, the exhaustion of fossil fuels, as on Earth, led to a period of the use of the uranides, whose further exploitation proved unprofitable after mastery of the Bethe Cycle. It seemed improbable that in the last hundred years the planet had gone through wars waged with nuclear weapons. The equatorial cold spot could not have been the result of such warfare. Any postatomic winter would have had to encompass virtually the entire planet, since the masses of dust thrown into the stratosphere would increase the albedo of the whole surface. The reasons for halting the construction of the ice ring from ocean water were unknown.

  He flipped through pages filled with graphs and tables, until he came to the chapter "Hypotheses on the Civilization."

  1) Quinta suffers from internal conflicts, which have influenced technological development. This suggests the presence of antagonistic nations or other aggregations. The period of open military encounters, belonging to the past, led to no resolution of the "conqueror-conquered" type. Instead, it gradually entered the phase of secret warfare.

  At this point an additional printout from DEUS was attached, done later, on board the Hermes:

  Evidence supporting the thesis of cryptomilitary activity are the parasites found in the two Quintan satellites. In this interpretation, blocs of adversaries remain, together, in a state that is neither classical peace nor classical war in the Clausewitzian sense.

  Their struggle takes place beyond front lines, in meteorological damage inflicted on the enemy, or in mutual catalytic erosion of technoindustrial potentials. This may have halted the creation of the ice ring, since that task would require global cooperation.

  The continuation again was from the Eurydice:

  If there exist such groups of antagonists and they contend nonclassically, then contact with any visitor from space may be rendered considerably more difficult. The a priori establishment of an alliance with the visitor is highly unlikely for either of the parties, if there are only two, because the extraplanetary intruder would have no rational reason, would have nothing to gain by taking sides in the conflict. Contact could actually serve as the spark that would turn the quiet, smoldering, steady, and stubbornly pursued secret war into a full-scale, head-on clash between both powers.

  An example. Let there be, on planet T, blocs A, B, and C, all locked in mutual conflict. If B establishes contact with the intruder, A and C will feel themselves seriously threatened. They may either attack the intruder—to keep him from increasing B's potential—or join in attacking B. The situation is unstable to begin with, and any introduction of an outside factor of great technological potential—such as the visitor must possess, having made his galactic jump—may suffice to escalate the hostilities.

>   2) Quinta is united, a federation or a protectorate. There are no equal antagonists on the planet, since one of the powers has acquired dominion over the others. Such dominion, whether the result of military victories or accomplished through nonmilitary subjugation, the weaker sides having submitted to the major power of the globe, also does not provide stability in the face of contact with a galactic intruder.

  One should not impute to the global power demonic or imperialistic designs of extraplanetary expansion. In this model of Quinta, the power does not wish to destroy the visitor but only to frustrate his efforts to establish contact—and, especially, to land on the planet. The technological gifts of the visitor could easily turn out to be poisonous. (Yet the attempt itself to keep such gifts from being offered, to prevent them from disturbing the current sociopolitical equilibrium, could disturb that equilibrium.) Thus in a united system as well, refusal of contact could be a sensible decision for the global powers. This policy of isolationism, directed toward outer space, has many precedents on Earth. The information threshold of contact to be surmounted by the visitor is indeterminate in magnitude.

  3) According to Folger, Kraft, and their group, a unified planet that has neither conquerors nor conquered, neither oppressors nor oppressed, may still not desire contact. The basic dilemmas of such a civilization that is beginning to veer from the Ortega-Nilssen path, near the upper region of the window, lie at the intersection of its culture and its technology. Culture is always characterized by a consistent lag of legal and moral-ethical norms behind the technology in its presaturated, parabolic period of acceleration. The technology makes possible what the cultural tradition forbids and considers unchangeable. (Examples: genetic engineering applied to beings corresponding to people; the control of sex; brain transplants.) In the light of such difficulties, contact with visitors shows its equivocal nature. The planetary party, rejecting contact, need not ascribe to the intruders any unfriendly motive. But its fears are justified: the injection of radically new technologies can destabilize social bonds and relations. Contact, moreover, is unpredictable in its consequences. This does not apply to radio contact—or any contact at a distance—since the receivers of the signals can, at their own discretion, make use of or ignore the acquired information.

  He was tired now, but still could not sleep. He flipped past several chapters and read the final one, on the procedure for contact.

  The SETI Project had addressed the above problems as difficulties a guest might experience in communicating with his prospective host. The expedition therefore had been equipped with special devices for communication as well as with automata that would be able, in the absence of preliminary negotiations through an exchange of signals, to demonstrate the peaceful nature of the expedition prior to landing. The initial procedure had many steps. The first announcement of the arrival of the ship from Earth would be an emission of waves (ranges given in an appendix) in the radio, heat, light, ultraviolet, and particle-beam bands. If there was no response, or an unintelligible response, landers would be sent to all continents. The landers' guiding sensors would direct them toward large concentrations of buildings.

  There were also plenty of sketches, diagrams, and specifications. In each lander there would be a transmitter-receiver and data about the Earth and its inhabitants. If this step, too, failed to elicit the desired reaction—the establishment of contact—heavier probes would be shot from the ship. These would have computers able to give instruction in the use of visual, tactile, and acoustic codes. The procedure was irreversible, with each step a continuation of the one preceding.

  The first landers contained indicator-emitters that could be activated only by the brutal destruction of their shielding: destruction caused not by a malfunction or a hard landing but by intentional, nondiscursive dismantling. (The pilot smiled at this wording to describe a caveman type bashing the transistorized emissary of humanity with his flintstone club. "Nondiscursive dismantling" also took place, he thought, when without explanation you knocked someone's teeth down his throat.)

  The indicators, grown from monocrystals, were so highly resistant that they could send a signal even if the lander was destroyed in a fraction of a second—blown up in midair, for instance, by an explosive. The program went on to describe in detail the different models for these messengers, and the volleys with which they should be dispatched, in synchronization, to the chosen landing fields, so that no region, no continent, would be privileged or omitted, etc.

  The book also contained a dissenting opinion from a group of SETI experts who were extreme pessimists. There were no material devices, they stated, no dispatches or declarations easy to decipher, that could not be interpreted as a mask concealing aggression. This resulted simply from the inevitable difference in technological levels.

  The phenomenon that in the nineteenth and especially twentieth centuries was called the "arms race" came into the world with the paleopithecanthropus, when he employed the long thighbones of antelopes as clubs, crushing more than chimpanzee skulls with them, since he was a cannibal. Then when science, the mother of accelerated technology, arose at the crossroads of the Mediterranean cultures, the military progress of the warring European nations—and later of the non-European—never gave one side an overwhelming advantage over another. The single exception to this rule was the atom bomb, but the United States enjoyed that monopoly only for the briefest moment in history.

  But the technological gap between civilizations in the Universe had to be enormous. What is more, to hit upon a civilization endowed developmentally as Earth's was would be, practically speaking, impossible.

  The thick volume included a number of other learned speculations. The visitor who initiated an underdeveloped host into the arcana of sidereal engineering might as well be giving children live hand grenades to play with—with the safety caps off. If, however, he did not reveal his knowledge, he risked being suspected of duplicity, of seeking to dominate, and thus he was damned either way.

  The profundity of the arguments finally overcame the reader, who with the help of the SETI program fell into such a sound sleep that the book remained in his hand and the light of the lamp did not disturb him.

  He was walking down a narrow, steeply downhill street, between houses, in the sun. Before the arches, children played. Laundry hung on lines at the windows. The uneven pavement, strewn with trash, banana peels, scraps of food, was cut by a gutter full of muddy water. Far at the foot of the hill was the port, crowded with sails. Shallow, lethargic waves lapped the beach; boats pulled up on the sand were separated by fishing nets. The sea, smooth to the horizon, gleamed with a ribbon of reflected sun. He smelled fried fish, urine, olive oil. He did not know how he got here, but knew that it was Naples. A small, swarthy girl ran, shouting at a boy who was fleeing with a ball. He would stop, pretend to throw her the ball, then dodge away before she could catch him. Other children shouted something in Italian. A woman was leaning out of a window; disheveled, in a chemise, she pulled in from the line stretched across the street her dry slips and skirts. Farther down began stone steps, cracked. Suddenly everything shuddered, there was a roar, walls began to crumble. He stood dumbfounded in a cloud of limestone dust, blinded. Something fell behind him. Women screamed—a rain of bricks—the thunder of the earthquake was deafening. Terremoto, terremoto—the cries were lost in the second, slowly building roll of thunder. Pieces of plaster fell on him; he covered his head with his arms, felt a blow in the face, and woke, but the earthquake did not go away. A tremendous weight pinned him to the bed. He tried to jump up; the belts held him. His book struck him in the forehead and flew to the ceiling. This was the Hermes, not Naples, but there was thunder and the walls reeled. He could feel the whole cabin moving. He hung, suspended. The lamp flickered. He saw the open book and a sweater flattened on the ceiling beneath him; from the upside-down shelves flew spools of film. It was not a dream, and it was not thunder. The sirens wailed. The light dimmed, flared, went out, and the emergency lights i
n the corners—of the floor now—switched on. He tried to find the clasps on the belts to release them, but the buckles, pressed by his chest, would not let go. His hands grew leaden; blood rushed to his head. He stopped struggling. He was thrown. The weight forced him now against the belts, now against the bed. He understood. He waited. Was this the end?

  At that hour—it was after midnight—there was no one in the darkroom. Kirsting sat down in front of the dead visiscope, buckled himself in by feel, found the buttons like a blind man, and set the tape in motion. Across the white rectangle of the illuminated screen moved, one by one, tomograms, almost black, with masses of brighter, rounded lines like X-ray shadows. Frame after frame went by until he stopped the tape. He was examining the surface SGs of Quinta. Gently he turned the micron dial to find the best image. At the center was a bristling convergence, as of an atomic nucleus, which scattered in fragments radially when hit. He shifted the image from the formless, milky spot at the center to its attenuated periphery.

  No one knew what the thing was. An inhabited building complex, a kind of giant city? On this frame one could see it in section, traced by nucleons of elements heavier than oxygen. Such tomography—three-dimensional, layered X-raying—of astronomical objects, known for a very long time, proved useful only for stars cooled to black dwarfs and for planets. But with all its ingeniousness, SG imaging had its limitations. The resolution was insufficient to allow one to distinguish the individual fossils, even if they were larger than the giant dinosaurs of the Mesozoic and Cretaceous. Nevertheless, he tried to make out the skeletons of the creatures of Quinta—and perhaps it was only those corresponding to people that filled this pseudocity, if indeed it was a metropolis of many millions. He reached the limit of resolution and crossed it. Then the tiny specters made of pale, trembling filaments were dispersed. The screen showed a dim chaos of motionless granulations.